DIMERIZATION OF α -ETHYLENIC DITHICESTERS

Pascal Gosselin, Serge Masson and André Thuillier.*

Laboratoire des Composés Thioorganiques, (ERA 391), Université, 14032 CAEN Cedex, France

Summary: Methyl propenedithioate and three methyl 2-butenedithioates were prepared and all but one of these hetero-dienes gave dimers resulting from a [4 + 2] cycloaddition. Formation of a 1,5-dithiocin ring was also observed from the propenedithioate.

Only few examples of α -ethylenic dithioesters substituted on the double bond by an alkyl 1,2 alkylthio 3,4,5 or amino 6-group appear in the literature. In our preceding paper 1, we described the preparation of some β -unsaturated dithioesters starting from allylic Grignard reagents and phenylisothiocyanate and we mentionned that these compounds could be readily isomerized to α -ethylenic dithioesters more or less stable at room temperature.

The three alkenedithiocarboxylates $\underline{4}$, $\underline{5}$ and $\underline{6}$ studied here were prepared by this process. Conjugation of the double bond from dithioesters $\underline{1}$, $\underline{2}$, $\underline{3}^1$ could be achieved in ether or carbon tetrachloride containing 5 % of triethylamine.

The dithioesters $\underline{4}$ and $\underline{5}$ were found not to be stable at room temperature so the isomerization was performed at -40° C and the NMR spectra of these compounds were recorded at this temperature. ¹H NMR (CCl₄) δ : $\underline{4}$: 2.60 (s, 3H), ABX₃ system: δ_{A} = 6.79 (1H), δ_{B} = 7.00 (1H), δ_{X} = 1.83 (3H), J_{AB} = 15, J_{AX} = -1,3, J_{BX} = 6,8 Hz; $\underline{5}$: 1.79 (dm, J= 7 Hz, 3H), 2.13 (m, 3H); 2.58 (s, 3H), 6.73 (qm, J= 7 Hz, 1H); $\underline{6}$: 1.92 (s, br, 3H), 2.18 (s, br, 3H), 2.55 (s, 3H), 6.63 (m, 1H). ¹³C NMR (CDCl₃) δ : $\underline{4}$: 18.7, 19.4, 137.4, 137.9, 224.6; $\underline{5}$: 15.3, 17.2, 20.2, 130.8, 144.5, 232.3; $\underline{6}$: 19.3, 21.9, 28.53, 132.0, 148.9, 225.2.

Methyl propenedithioate $\underline{9}$ was obtained by flash thermolysis $\underline{^7}$ of dithioester $\underline{8}$ prepared from the known nitrile $\underline{7}^8$ according to the usual procedure $\underline{^9}$.

The unstable red dithioester $\underline{9}$ was trapped on a CFCl₃ or CD₂Cl₂ matrix at -196°C and its spectra were recorded at -90°C. ¹H NMR (CFCl₃) : 2.68 (s, 3H), \sim AMX system $\delta_{\rm A}$ = 5.56 (1H), $\delta_{\rm M}$ = 6.48 (1H), $\delta_{\rm X}$ = 6.95 (1H), $J_{\rm AM}$ ~ 0, $J_{\rm AX}$ = 10 Hz, $J_{\rm MX}$ = 17 Hz; ¹³C RMN (CD₂Cl₂) δ : 20.2, 123.6, 141.2, 226.2.

Except for dithioester $\underline{6}^{10}$ (disubstituted on C_3) these red dithioesters gave orange dimers at room temperature. Few examples of dimerizations of α -unsaturated thiocarbonyl compounds resulting from a $\begin{bmatrix} 4+2 \end{bmatrix}$ cycloaddition were previously reported in the literature. The dienophile moiety (C=C or C=S double bond) involved in these hetero-Diels-Alder reactions seems very much influenced by the nature of the substituents: dihydrothiopyran and dithiin rings were respectively obtained from aromatic $\frac{11}{12}$ and aliphatic $\frac{14}{12}$ α -ethylenic thioketones.

From dithioesters $\underline{4}$, $\underline{5}$ (solutions in CCl₄) and $\underline{9}$ (in CFCl₃) the dimers $\underline{10}$, $\underline{11}$, 12 were obtained¹⁵, only one geometrical isomer in each case.

¹H NMR (CC1₄): 10: 1.00 (d, J= 7 Hz, C₄-CH₃), 1.22 (d, J= 6.2 Hz, C₆-CH₃), 2.25 (s, C₂-SCH₃), 2.57 (s, CSSCH₃), ~2.6 (m partially masked, H₄), 3.39 (dd, H₅, JH₅H₆= 10 Hz, JH₅H₄= 4 Hz), 3.75 (dq, H₆, JH₆H₅= 10 Hz, JH₆-CH₃= 6.2 Hz, a doublet was observed for this proton when the methyl group at 1.22 was irradiated), 5.87 (d, H₃, JH₃H₄= 6.4 Hz; 11: 0.90 (d, J= 6.8 Hz, C₄-CH₃) 1.16 (d, J= 6.5 Hz, C₆-CH₃), 1.48 (s, C₅-CH₃), 2.05 (s, C₃-CH₃), 2.27 (s, C₂-SCH₃), 2.32 (q partially masked, H₄, J= 6.8 Hz), 2.60 (s, CSSCH₃), 4.44 (q, H₆, J= 6.5 Hz); 12: 2.30 (s, C₂-SCH₃), 2.63 (s, CSSCH₃), 2.12 to 3.88 (m, 5H), 5.99 (dd, H₃, J₁ ~ 6 Hz, J₂ ~ 3 Hz).

The ¹³C NMR spectra of these dimers confirm the occurrence of the dithioester function (δ C=S is respectively observed at 237.2, 244.3 and 240.9 ppm for $\underline{10}$, $\underline{11}$ and $\underline{12}$) and the regionelectivity of the addition is readily deduced from the multiplicity and chemical shifts of signals in ¹H NMR spectra.

In particular, for dimer 10, the expected doublet of doublet for the proton H_5 adjacent to the dithioester group is observed at 3.39. More over, the values of the coupling constants between H_5H_6 , H_5H_4 and H_3H_4 in dimer $\underline{10}$ are consistent with a stereochemistry which results from a cycloaddition of the monomer 4 (E) involving an endo transition state $\underline{^{16}}$.

H

R

S

R =
$$-C - SCH_3$$

H

 $A_{5} + A_{6} = 10 \text{ Hz}$
 $A_{1} + A_{1} = 10 \text{ Hz}$
 $A_{1} + A_{2} = 4 \text{ Hz}$
 $A_{2} + A_{3} + A_{4} = 6.4 \text{ Hz}$
 $A_{3} + A_{4} = 6.4 \text{ Hz}$
 $A_{4} + A_{5} + A_{5} = 6.2 \text{ Hz}$

The high value (10 Hz) for $J_{E_5H_6}$ indicates a trans axial configuration between these two protons and an almost rigid conformation similar to the one suggested by Quiniou and al. for the dimer of a 4-methoxythiochalcone ¹¹.

Although the NMR spectrum of <u>11</u> does not enable us to determine its sterecchemistry, an <u>endo</u> transition state (promoted by secondary orbital interactions ¹⁶) can be assumed for its formation. An attempt to purify <u>11</u> by distillation (13 Torr, 160°C) gave a red distillate containing a mixture of monomer <u>5</u> E (85%) and dimer <u>11</u> (15%). A complete cycloreversion was obtained by flash thermolysis (10⁻² Torr, 250°C).

At room temperature, an exclusive formation of dimers $\underline{10}$ and $\underline{11}$ was observed but the dimerization of the methyl propenedithicate $\underline{9}$ was not so selective and in particular some polymerization occurred. If the pure dimer $\underline{12}$ was isolated after chromatography on silicagel (eluant: pentane), the NMR spectrum of the crude dimerization product showed, beside the signals of $\underline{12}$, those of a by-product $\underline{13}$. More over, when the initial solution of the monomer $\underline{9}$ was maintained at $-50\,^{\circ}\text{C}$ and the evolution was followed by NMR, we could observe almost exclusively the formation of $\underline{13}$: ${}^{1}\text{H}$ NMR (CD₂Cl₂) δ : 2.30 (s, 6H); 3.75 (\sim d, J= 7.6 Hz, 4H), 5.87 (t, J= 7.6 Hz, 2H); ${}^{13}\text{C}$ NMR (CD₂Cl₂) δ : 17.24 (SCH₃), 34.48 (CH₂), 128.59 (=C-SCH₃),134.66 (CH=); mass spectrum: M_{\star}^{+} = 236. At room temperature $\underline{13}$ slowly isomerizes to the [4+2] dimer $\underline{12}$ and polymerization is observed simultaneously.

$$\underbrace{\underline{A}}_{\text{MeS}} \underbrace{S-S}_{\text{SMe}} \underbrace{MeS}_{\text{MeS}} \underbrace{S-S}_{\text{SMe}}$$

Two dimeric structures A and B can be proposed for 13, both in agreement with the observed NMR coupling constant (7.6 Hz) between adjacent methylene and methine protons ¹⁷. However, the 4,8-bis methylthio-2H, 6H-1,5 dithiocin B is the structure which is the most consistent with the observed chemical shift (3.75 ppm) of the methylene protons deshielded by both a sulfur atom and a double bond in α and α' . Besides, the same type of dimer was previously obtained by thermal dimerization of the benzothiete ¹⁸.

REFERENCES AND NOTES

- P. Gosselin, S. Masson and A. Thuillier, Tetrahedron Letters, 2715 (1978).
- ² H. Westmijze, H. Kleijn, J. Meijer and P. Vermeer, Synthesis, 432 (1979).
- ³ J. Maignan and J. Vialle, Bull. Soc. Chim., 1973 (1973).
- ⁴ A.C. Brouwer and H.J.T. Bos, Tetrahedron Letters, 209 (1976).
- 5 Z.I. Yoshida, S. Yoneda, T. Kawase and M. Inaba, Tetrahedron Letters, 1285 (1978).
- R. Kalish, A.E. Smith and E.J. Smutny, Tetrahedron Letters, 2241 (1971).
- J.L. Ripoll, Bull.Soc.Chim.Fr 2567 (1974).
- F. Lecoustumer, M.F. Leutie and P. Dizabo, J. Label, Compounds, 9, 355 (1973).
- C.S. Marvel, P. de Radzitzky and J.J. Brader, J.Amer. Chem. Soc. 77, 5997 (1955)
- This dithioester was distilled (b.p. 55°C/0.01 Torr) and its dimerization was not observed in refluxing toluene.
- 11 J.P. Pradere, G. Bouet and H. Quiniou, Tetrahedron Letters, 3471 (1972).
- J.S.A. Brunskill, A. De and D.F. Ewing, J.Chem.Soc. Perkin I, 629 (1978).
- 13 T. Karakasa and S. Motoki, J.Org. Chem. 43, 4147 (1978).
- P. Beslin, D. Lagain and J. Vialle, Tetrahedron Letters, 2677 (1979).
- Dimerization of 4 and 5 could be followed by NMR and for 20 %-solution of the monomer in CCl₄, half-dimerization time was ~38 min (4 →10) and ~75 min (5 →11); 11 cristallized in methanol (F: 38°C), microanalysis: Calc.%: C 49.27, H 6.89, S 43.84; found C 49.08, H 6.75, S 43.68, Mass spectra m/e (%): 292 (12), 205 (11), 146 (21), 131 (100), 120 (12), 99 (75), 65 (31), 59 (17), 55 (15), 45 (13).
- 16 R.W. Hoffmann, Angew. Chem. Int. Ed. 781 (1969).
- A thiacyclobutene structure is not consistent with the mass spectrum and should give a much smaller coupling constant: D.C. Dittmer, K. Takahashi and H. Davis, Tetrahedron Letters, 4061 (1967).
- ¹⁸ W.J.M. Van Tilborg, R. Plomp, J.C.S. Chem. Comm., 130 (1977).

(Received in France 1 April 1980)